• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Chemistry & Earth Sciences
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Application of fractional factorial design for green synthesis of cyano-modified silica nanoparticles: Chemometrics and multifarious response optimization

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Elazazy M.S.
    Issa A.A.
    Al-Mashreky M.
    Al-Sulaiti M.
    Al-Saad K.
    Metadata
    Show full item record
    Abstract
    Cyano-functionalized spherical silica nanoparticles (SNPs) were synthesized via St?ber method. A 2 k-p IV fractional factorial design (2k-p IV-FFD) was used to smartly prepare monodispersed evenly distributed SNPs. Six factors were considered; concentrations of tetraethylorthosilicate (TEOS), 3-Cyanopropyltriethoxysilane (CPTS), water, and ammonia, reaction time (RT) and stirring time (ST). Two responses; particle size (PS, measured by SEM) and particle-size distribution (PSD, calculated as standard deviation, SD) were measured. Control charts were used to decide on impacts of linear and two-way interactions on both responses. Derringer's function was used to consolidate these multifarious responses into a uniform execution characteristic. Both screening and optimization were always accompanied by ANOVA testing at a 95.0% confidence interval (CI). The ideal synthetic conditions were obtained from the composite desirability plots. Cyano-functionalized SNPs with an average PS of 474.04 86.71 nm were produced. Raman spectroscopy and FTIR were used to confirm the functionalization process. Thermogravimetric analysis (TGA) was used to evaluate the thermal behavior of synthesized particles. 2018 The Society of Powder Technology Japan
    DOI/handle
    http://dx.doi.org/10.1016/j.apt.2018.02.012
    http://hdl.handle.net/10576/12080
    Collections
    • Chemistry & Earth Sciences [‎615‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video