• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Energy efficiency of direct contact membrane distillation

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Ullah R.
    Khraisheh M.
    Esteves R.J.
    McLeskey J.T.
    Jr
    AlGhouti M.
    Gad-el-Hak M.
    Vahedi Tafreshi H.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Membrane distillation (MD) is a promising technology due to its ability to function using low temperature differences and low-quality heat sources, thus allowing it to operate on solar or waste heat. The flux and energy efficiency of MD are influenced by temperature and concentration polarization, process conditions, and membrane-related parameters like thickness, tortuosity, thermal conductivity, pore size, and porosity. To date, a comprehensive review of membrane and distillation parameters on energy consumption has not yet been conducted. Accordingly, this review introduces the central energy parameters for MD (e.g., energy efficiency, gained output ratio, etc.) and discusses the reported impacts of membrane properties, mass and heat transfer, feed water properties, and system parameters on the energy parameters. The application of solar energy to direct contact MD (DCMD) is also discussed. A critical analysis of the energy efficiency of DCMD processes will help to establish its strengths and limitations and provide a road map for the development of this technology for both large-scale and portable applications. 2018 Elsevier B.V.
    DOI/handle
    http://dx.doi.org/10.1016/j.desal.2018.01.025
    http://hdl.handle.net/10576/12097
    Collections
    • Biological & Environmental Sciences [‎933‎ items ]
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video