• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Public Health
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Health Sciences
  • Public Health
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Artificial neural network metamodel for sensitivity analysis in a total hip replacement health economic model.

    Thumbnail
    Date
    2019-09-01
    Author
    Alam, M Fasihul
    Briggs, Andrew
    Metadata
    Show full item record
    Abstract
    : Metamodels have been used to approximate complex simulations and have many applications with sensitivity analysis, optimization, etc. However, their use in health economics is very limited. Application of artificial neural network (ANN) with a health economic model has never been investigated. The study intends to introduce ANN as a metamodeling method to conduct sensitivity analysis in a total hip replacement decision analytical model and compare its performance with two other counterparts. : First, a nonlinear factor screening method was adopted to screen out unimportant factors from the simulation. Second, an ANN was developed using the important variables to approximate the simulation. Performance of the ANN metamodel was then compared with its Gaussian Process (GP) and multiple linear regression (MLR) counterparts. : Out of 31, the factor screening method identified 12 important variables from the simulation. ANN metamodels showed best predictive capabilities in terms of performance measures (mean squared error of prediction, MSEP and mean absolute percentage deviation, MAPD) used for predicting both costs and quality-adjusted life years (QALYs) for two prostheses. : The study provides a methodological development in sensitivity analysis and demonstrates that an ANN metamodel is a potential approximation method for computationally expensive health economic simulations.
    DOI/handle
    http://dx.doi.org/10.1080/14737167.2019.1665512
    http://hdl.handle.net/10576/12110
    Collections
    • Public Health [‎500‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video