• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Biomechanical design of a composite femoral prosthesis to investigate the effects of stiffness, coating length, and interference press fit

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2018
    Author
    Tarlochan F.
    Mehboob H.
    Mehboob A.
    Chang S.-H.
    Metadata
    Show full item record
    Abstract
    Traditionally, high stiffness hip prostheses are associated with aseptic loosening. Hence, the effects of stiffness, coating length, and interference press fit on load sharing and micro-movements are investigated for a better understanding from a mechanical perspective. A simplified 3D model of the femur and prostheses composed of cobalt chrome (CoCr), titanium (Ti), and glass/polypropylene (Twintex [0]2nT) composite are constructed. Three interference fits corresponding to 5, 25, and 50 µm are used with half, three-quarter, and full lengths of coating that are used to assemble the prostheses with bones to investigate micro-movements at the bone-prosthesis interfaces, interfacial failure, and stress transfer to the bone. The reaction forces of body weight and muscular forces in the femur are used to simulate the FE model. The results indicate that the CoCr and Ti prostheses exhibit low micro-movements at the proximal end and high micro-movements at the distal end and vice versa for the Twintex [0]2nT composite prosthesis. Uniformity of stress transfer to the bone along the prosthesis efficiently increases with increases in the coating lengths and interference press fits for all the cases. A fully coated length of Twintex [0]2nT composite prosthesis with a 50-µm interference press fit provides the most efficient load sharing and stress transfer to the bone and micro-movements at the bone–prosthesis interface.
    DOI/handle
    http://dx.doi.org/10.1016/j.compstruct.2018.08.011
    http://hdl.handle.net/10576/12233
    Collections
    • Mechanical & Industrial Engineering [‎1509‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video