• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Mechanical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Mechanical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Corrosion Detection Using Transfer Learning-Based Modeling for Image Classification

    Thumbnail
    View/Open
    Ahmad Aqel_OGS Approved Thesis.pdf (2.176Mb)
    Date
    2019-06
    Author
    Aqel, Ahmad Hasan Bader
    Metadata
    Show full item record
    Abstract
    This study uses image classification-based transfer learning to train models on the task of corrosion-detection on metallic surfaces. This is done by photographing images of samples of aluminium, iron and steel before and after corrosion to create visually differentiated datasets. With the exception of Model 1 which was trained and tested with a split of the original training set, the models were trained and tested on a newly prepared set to measure their accuracies fairly and realistically. Model 1 was used to evaluate hypermeters, achieving an accuracy of 96.5%. Model 2, categorizing all images into corroded and uncorroded, scored an accuracy of 97.67%. Model 3, categorizing images into corroded, uncorroded and pitted, scored an accuracy of 95.67%. Model 4, trained to separate images into uncorroded aluminium, corroded aluminium, uncorroded steel/iron and corroded steel/iron, performed relatively poorly at 80%, but revealed that the majority of mislabeling is the result of combining the two materials in the sample model. Models 5 and 6 were trained on steel alone and aluminium alone, respectively. Model 5 scored an accuracy of 99.38%, while Model 6 scored a perfect 100%.
    DOI/handle
    http://hdl.handle.net/10576/12333
    Collections
    • Mechanical Engineering [‎65‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video