• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    QoE-Aware Resource Allocation For Crowdsourced Live Streaming: A Machine Learning Approach

    Thumbnail
    View/Open
    Fatima Hoarani_OGS Approved Thesis.pdf (2.065Mb)
    Date
    2019-06
    Author
    Haouari, Fatima
    Metadata
    Show full item record
    Abstract
    In the last decade, empowered by the technological advancements of mobile devices and the revolution of wireless mobile network access, the world has witnessed an explosion in crowdsourced live streaming. Ensuring a stable high-quality playback experience is compulsory to maximize the viewers’ Quality of Experience and the content providers’ profits. This can be achieved by advocating a geo-distributed cloud infrastructure to allocate the multimedia resources as close as possible to viewers, in order to minimize the access delay and video stalls. Additionally, because of the instability of network condition and the heterogeneity of the end-users capabilities, transcoding the original video into multiple bitrates is required. Video transcoding is a computationally expensive process, where generally a single cloud instance needs to be reserved to produce one single video bitrate representation. On demand renting of resources or inadequate resources reservation may cause delay of the video playback or serving the viewers with a lower quality. On the other hand, if resources provisioning is much higher than the required, the extra resources will be wasted. In this thesis, we introduce a prediction-driven resource allocation framework, to maximize the QoE of viewers and minimize the resources allocation cost. First, by exploiting the viewers’ locations available in our unique dataset, we implement a machine learning model to predict the viewers’ number near each geo-distributed cloud site. Second, based on the predicted results that showed to be close to the actual values, we formulate an optimization problem to proactively allocate resources at the viewers’ proximity. Additionally, we will present a trade-off between the video access delay and the cost of resource allocation. Considering the complexity and infeasibility of our offline optimization to respond to the volume of viewing requests in real-time, we further extend our work, by introducing a resources forecasting and reservation framework for geo-distributed cloud sites. First, we formulate an offline optimization problem to allocate transcoding resources at the viewers’ proximity, while creating a tradeoff between the network cost and viewers QoE. Second, based on the optimizer resource allocation decisions on historical live videos, we create our time series datasets containing historical records of the optimal resources needed at each geo-distributed cloud site. Finally, we adopt machine learning to build our distributed time series forecasting models to proactively forecast the exact needed transcoding resources ahead of time at each geo-distributed cloud site. The results showed that the predicted number of transcoding resources needed in each cloud site is close to the optimal number of transcoding resources.
    DOI/handle
    http://hdl.handle.net/10576/12349
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video