• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Central Laboratories Unit
  • Central Laboratories Unit Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Central Laboratories Unit
  • Central Laboratories Unit Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Influence of temperature, salinity and Mg:Ca ratio on microbially-mediated formation of Mg-rich carbonates by Virgibacillus strains isolated from a sabkha environment.

    Thumbnail
    View/Open
    Influence of temperature, salinity and Mg2+Ca2+ ratio on microbially-mediated formation of Mg-rich carbonates by Virgibacillus strains isolated from a sabkha environment.pdf (2.187Mb)
    Date
    2019-12-23
    Author
    Al Disi, Zulfa Ali
    Bontognali, Tomaso R R
    Jaoua, Samir
    Attia, Essam
    Al-Kuwari, Hamad Al Saad
    Zouari, Nabil
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Studies have demonstrated that microbes facilitate the incorporation of Mg into carbonate minerals, leading to the formation of potential dolomite precursors. Most microbes that are capable of mediating Mg-rich carbonates have been isolated from evaporitic environments in which temperature and salinity are higher than those of average marine environments. However, how such physicochemical factors affect and concur with microbial activity influencing mineral precipitation remains poorly constrained. Here, we report the results of laboratory precipitation experiments using two mineral-forming Virgibacillus strains and one non-mineral-forming strain of Bacillus licheniformis, all isolated from the Dohat Faishakh sabkha in Qatar. They were grown under different combinations of temperature (20°, 30°, 40 °C), salinity (3.5, 7.5, 10 NaCl %w/v), and Mg:Ca ratios (1:1, 6:1 and 12:1). Our results show that the incorporation of Mg into the carbonate minerals is significantly affected by all of the three tested factors. With a Mg:Ca ratio of 1, no Mg-rich carbonates formed during the experiments. With a Mg:Ca ratios of 6 and 12, multivariate analysis indicates that temperature has the highest impact followed by salinity and Mg:Ca ratio. The outcome of this study suggests that warm and saline environments are particularly favourable for microbially mediated formation of Mg-rich carbonates and provides new insight for interpreting ancient dolomite formations.
    DOI/handle
    http://dx.doi.org/10.1038/s41598-019-56144-0
    http://hdl.handle.net/10576/12415
    Collections
    • Biological & Environmental Sciences [‎931‎ items ]
    • Central Laboratories Unit Research [‎113‎ items ]
    • Marine Science Cluster [‎215‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video