• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Chemical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Advancements in concrete mix designs: High-performance and ultrahigh-performance concretes from 1970 to 2016

    Thumbnail
    Date
    2018
    Author
    Sohail M.G.
    Wang B.
    Jain A.
    Kahraman R.
    Ozerkan N.G.
    Gencturk B.
    Dawood M.
    Belarbi A.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    This paper reviews the methods adopted to produce high-performance concrete (HPC) and ultrahigh-performance concrete (UHPC). The chronological development of these concretes in terms of their constituents, mixture proportions, mixing protocols, and particle packing models from selected literature are presented. The paper highlights the earliest techniques that were used to obtain cementitious materials with high strength and durability, including pressure mixing and heat curing. The paper also covers the work done on HPC and UHPC since the late 1990s and summarizes the current state of the art. Numerous mixture proportions to attain target compressive strengths between 100 and 200 MPa are presented. Higher compressive strengths are achieved with denser mixtures (with practically achievable maximum particle packing densities, i.e., interparticle pores are minimized). In other words, particle packing density is a major attribute in the achievement of low porosity, flowability, durability, and reduced defects in concrete. Therefore, models, theories, and trial methods to achieve a higher packing density in concrete are presented. - 2017 American Society of Civil Engineers.
    DOI/handle
    http://dx.doi.org/10.1061/(ASCE)MT.1943-5533.0002144
    http://hdl.handle.net/10576/12439
    Collections
    • Center for Advanced Materials Research [‎1570‎ items ]
    • Chemical Engineering [‎1249‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video