عرض بسيط للتسجيلة

المؤلفRaitoharju J.
المؤلفKiranyaz S.
المؤلفGabbouj M.
تاريخ الإتاحة2020-02-05T08:53:07Z
تاريخ النشر2018
اسم المنشورNeural Computing and Applications
المصدرScopus
الرقم المعياري الدولي للكتاب9410643
معرّف المصادر الموحدhttp://dx.doi.org/10.1007/s00521-016-2504-4
معرّف المصادر الموحدhttp://hdl.handle.net/10576/12715
الملخصMost existing content-based image retrieval and classification systems rely on low-level features which are automatically extracted from images. However, often these features lack the discrimination power needed for accurate description of the image content, and hence, they may lead to a poor retrieval or classification performance. We propose a novel technique to improve low-level features which uses parallel one-against-all perceptrons to synthesize new features with a higher discrimination power which in turn leads to improved classification and retrieval results. The proposed method can be applied on any database and low-level features as long as some ground-truth information is available. The main merits of the proposed technique are its simplicity and faster computation compared to existing feature synthesis methods. Extensive simulation results show a significant improvement in the features' discrimination power. 2016, The Natural Computing Applications Forum.
اللغةen
الناشرSpringer London
الموضوعContent-based image retrieval and classification
Feature synthesis
Multi-dimensional particle swarm optimization
Multi-layer perceptrons
العنوانFeature synthesis for image classification and retrieval via one-against-all perceptrons
النوعArticle
الصفحات943-957
رقم العدد4
رقم المجلد29
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة