Feature synthesis for image classification and retrieval via one-against-all perceptrons
المؤلف | Raitoharju J. |
المؤلف | Kiranyaz S. |
المؤلف | Gabbouj M. |
تاريخ الإتاحة | 2020-02-05T08:53:07Z |
تاريخ النشر | 2018 |
اسم المنشور | Neural Computing and Applications |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 9410643 |
الملخص | Most existing content-based image retrieval and classification systems rely on low-level features which are automatically extracted from images. However, often these features lack the discrimination power needed for accurate description of the image content, and hence, they may lead to a poor retrieval or classification performance. We propose a novel technique to improve low-level features which uses parallel one-against-all perceptrons to synthesize new features with a higher discrimination power which in turn leads to improved classification and retrieval results. The proposed method can be applied on any database and low-level features as long as some ground-truth information is available. The main merits of the proposed technique are its simplicity and faster computation compared to existing feature synthesis methods. Extensive simulation results show a significant improvement in the features' discrimination power. 2016, The Natural Computing Applications Forum. |
اللغة | en |
الناشر | Springer London |
الموضوع | Content-based image retrieval and classification Feature synthesis Multi-dimensional particle swarm optimization Multi-layer perceptrons |
النوع | Article |
الصفحات | 943-957 |
رقم العدد | 4 |
رقم المجلد | 29 |
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2754 items ]