• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Multi-Order Statistical Descriptors for Real-Time Face Recognition and Object Classification

    Thumbnail
    عرض / فتح
    Multi-Order Statistical Descriptors for Real-Time Face Recognition and Object Classification1.pdf (7.869Mb)
    التاريخ
    2018
    المؤلف
    Mahmood A.
    Uzair M.
    Al-Maadeed S.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    We propose novel multi-order statistical descriptors which can be used for high speed object classification or face recognition from videos or image sets. We represent each gallery set with a global second-order statistic which captures correlated global variations in all feature directions as well as the common set structure. A lightweight descriptor is then constructed by efficiently compacting the second-order statistic using Cholesky decomposition. We then enrich the descriptor with the first-order statistic of the gallery set to further enhance the representation power. By projecting the descriptor into a low-dimensional discriminant subspace, we obtain further dimensionality reduction, while the discrimination power of the proposed representation is still preserved. Therefore, our method represents a complex image set by a single descriptor having significantly reduced dimensionality. We apply the proposed algorithm on image set and video-based face and periocular biometric identification, object category recognition, and hand gesture recognition. Experiments on six benchmark data sets validate that the proposed method achieves significantly better classification accuracy with lower computational complexity than the existing techniques. The proposed compact representations can be used for real-time object classification and face recognition in videos. 2013 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2018.2794357
    http://hdl.handle.net/10576/12750
    المجموعات
    • علوم وهندسة الحاسب [‎2491‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video