• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ridge penalization-based generalized linear model (GzLM) for predicting risky-driving index

    Thumbnail
    Date
    2018
    Author
    Rouf K.B.A.
    Abdella G.M.
    Al-Khalifa K.N.
    Alhajyaseen W.
    Metadata
    Show full item record
    Abstract
    Road traffic crashes remain one of the major causes of preventable death and injury worldwide. Human behavior is considered one of the main factors leading to such tragic losses. In this paper, we analyze the responses of an online survey questionnaire and identify the variables that are most likely to be correlated with individual driving behavior of drivers. Weights are allocated to nine risky-driving behaviors considered in the survey based on self-reported frequency of the driving behaviors the participants were involved in at the time of a recent traffic crash. Initially, weighted individual self-rated risky-driving behaviors are used to estimate the risky-driving index (RDI) for individual drivers. RDI is defined as a quantitative measure of a driver's risky-driving propensities based on basic profile and driving history. Finally, a standardized model for predicting a driver's RDI is proposed using Ridge penalization-based generalized linear regression with a standard error of estimate equal to 0.713. According to the model, female drivers have lower RDI compared to male drivers. Also, younger drivers have higher RDI than older drivers. Lastly, hours driven per day have more positive impact on RDI than the number of accidents or the driving experience of a driver. IEOM Society International.
    DOI/handle
    http://hdl.handle.net/10576/12787
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]
    • Traffic Safety [‎163‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video