Show simple item record

AuthorAldous K.
AuthorHussein M.
AuthorAbdeljaber O.
Available date2020-02-05T08:54:07Z
Publication Date2018
Publication Name25th International Congress on Sound and Vibration 2018, ICSV 2018: Hiroshima Calling
Publication Name25th International Congress on Sound and Vibration 2018: Hiroshima Calling, ICSV 2018
ResourceScopus
ISBN9.78E+12
URIhttp://hdl.handle.net/10576/12802
AbstractIn 2013, Qatar Rail announced major rail projects that include an urban rail network for the city of Doha with lines running on the surface and underground which are expected to be in operation by 2020. Railway systems are known as attractive means of transportation that can be implemented to solve traffic problems in urban areas. However, they are associated with noise and vibration that cause disturbance, not only to passengers, but also to occupants of nearby buildings. The purpose of this paper is to contribute to the literature by developing an understanding on the dynamic tunnel-soil interaction and the propagation of waves in the ground. In this work, a Finite Element model has been developed that accounts for the specific details of tunnel and ground by a commercial FE software, Abaqus 6-14. The software is used first to model a single isolated tunnel in 2D (plane strain) with point load (corresponding to line load for the 3D case). Then, the software is used to model 3D tunnel under a line load. The results for the 2D and 3D models were found to be matching each other as well as with results from other models reported in the literature. A 2D plane strain model is then developed for a tunnel embedded in a half space and a good agreement was observed when comparing the results with those reported in the literature. Finally, the FE package was used to explore the effect of tunnel shape on the propagation of ground-borne vibration. Several FE models of circular, oval, square, and rectangular tunnels embedded in a multi-layered medium representing Qatar soil were created and analyzed. The numerical results revealed that tunnel shape influences the dynamic tunnel-soil interaction. 25th International Congress on Sound and Vibration 2018, ICSV 2018: Hiroshima Calling. All rights reserved.
SponsorThe financial support for this research was provided by Qatar university Grant, Project Number: QUUG-CENG-CAE-17/18-2. The statements made herein are solely the responsibility of the authors.
Languageen
PublisherInternational Institute of Acoustics and Vibration, IIAV
SubjectGround-Borne Vibration
Railways
Tunnel Shape
TitleGround-borne vibration investigation by model-ling the tunnel-soil interaction using a finite element package
TypeConference Paper
Pagination3969-3976
Volume Number7


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record