• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الميكانيكية والصناعية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    ANN Model for Energy Demand and Supply Forecasting in a Hybrid Energy Supply System

    Thumbnail
    التاريخ
    2018
    المؤلف
    Ayoub N.
    Musharavati F.
    Pokharel S.
    Gabbar H.A.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    This paper presents short term demand and supply forecasting model for a microgrid supply system used to secure the electricity demands of a commercial building, using one year demand data collected in hourly base. One-year renewable-based Micro-grid electricity supply data were produced by simulating its sub-systems (wind and PV supply systems). The Artificial Neural Network, ANN, forecasting models are built on predicting generation capacity and load demands in the next 24 hours. The ANN model presented here is a micro-level supply and demand forecasting model that links the decision making with the performance measures. To sustain the model results, the daily weather forecasts supplied by local authorities, are incorporated in our model. The models validity were tested by calculating the Mean Absolute Percent Error for the forecasted data. The ANN models' applicability and performance were tested in a case study for forecasting the demands of a hotel building and the supply potential of its microgrid supply sub-system. The building demands are assumed to be supplied by a hybrid supply system of 20% renewable-based Micro grid (10% Wind and 10% Photovoltaic) and 80% from electricity grid.
    DOI/handle
    http://dx.doi.org/10.1109/SEGE.2018.8499514
    http://hdl.handle.net/10576/13014
    المجموعات
    • الهندسة الميكانيكية والصناعية [‎1499‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video