• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    QoE-aware distributed cloud-based live streaming of multisourced multiview videos

    Thumbnail
    Date
    2018
    Author
    Bilal K.
    Erbad A.
    Hefeeda M.
    Metadata
    Show full item record
    Abstract
    Video streaming is one of the most prevailing and bandwidth consuming Internet applications today. Advancements in technology and prevalence of video capturing devices result in massive multi-sourced (aka crowdsourced) live video broadcasting over the Internet. A single scene may be captured by multiple spectators from different angles (views), enabling an opportunity for interactive multiview video by integrating these individually captured views. Such multi-sourced multiview video offers more realistic and immersive experience of a scene. In this paper, we present a Quality of Experience (QoE) driven, cost effective Crowdsourced Multiview Live Streaming (CMLS) system. The CMLS aims to minimize the overall system cost by selecting optimal cloud site for video transcoding and the number of representations, based on the view popularity and viewer's available bandwidth. In addition, we present a QoE metric considering delay and received video quality. We formulate the selection of optimal cloud site and number of representations to meet the required QoE as a resource allocation problem using Integer Programming (IP). Moreover, we present a Greedy Minimal Cost (GMC) algorithm to perform resource allocation efficiently. We use real live video traces collected from three large-scale live video providers (Twitch.tv, YouTube Live, and YouNow) to evaluate our proposed strategy. We evaluate the GMC algorithm considering the overall cost, QoE, video quality, and average latency between viewers and transcoding location. We compare our results with the optimal solution and the state-of-the art policy used in a popular video steaming system. Our results demonstrate that the GMC achieves near optimal results and substantially outperforms the state-of-the art policy.
    DOI/handle
    http://dx.doi.org/10.1016/j.jnca.2018.07.012
    http://hdl.handle.net/10576/13023
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video