• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    QoE-aware distributed cloud-based live streaming of multisourced multiview videos

    Thumbnail
    التاريخ
    2018
    المؤلف
    Bilal K.
    Erbad A.
    Hefeeda M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Video streaming is one of the most prevailing and bandwidth consuming Internet applications today. Advancements in technology and prevalence of video capturing devices result in massive multi-sourced (aka crowdsourced) live video broadcasting over the Internet. A single scene may be captured by multiple spectators from different angles (views), enabling an opportunity for interactive multiview video by integrating these individually captured views. Such multi-sourced multiview video offers more realistic and immersive experience of a scene. In this paper, we present a Quality of Experience (QoE) driven, cost effective Crowdsourced Multiview Live Streaming (CMLS) system. The CMLS aims to minimize the overall system cost by selecting optimal cloud site for video transcoding and the number of representations, based on the view popularity and viewer's available bandwidth. In addition, we present a QoE metric considering delay and received video quality. We formulate the selection of optimal cloud site and number of representations to meet the required QoE as a resource allocation problem using Integer Programming (IP). Moreover, we present a Greedy Minimal Cost (GMC) algorithm to perform resource allocation efficiently. We use real live video traces collected from three large-scale live video providers (Twitch.tv, YouTube Live, and YouNow) to evaluate our proposed strategy. We evaluate the GMC algorithm considering the overall cost, QoE, video quality, and average latency between viewers and transcoding location. We compare our results with the optimal solution and the state-of-the art policy used in a popular video steaming system. Our results demonstrate that the GMC achieves near optimal results and substantially outperforms the state-of-the art policy.
    DOI/handle
    http://dx.doi.org/10.1016/j.jnca.2018.07.012
    http://hdl.handle.net/10576/13023
    المجموعات
    • علوم وهندسة الحاسب [‎2489‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video