• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Efficient Parallel Skyline Query Processing for High-Dimensional Data

    Thumbnail
    التاريخ
    2018
    المؤلف
    Tang M.
    Yu Y.
    Aref W.G.
    Malluhi Q.M.
    Ouzzani M.
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Given a set of multidimensional data points, skyline queries retrieve those points that are not dominated by any other points in the set. Due to the ubiquitous se of skyline queries, such as in preference-based query answering and decision making, and the large amount of data that these queries have to deal with, enabling their scalable processing is of critical importance. However, there are several outstanding challenges that have not been well addressed. More specifically, in this paper, we are tackling the data straggler and data skew challenges introduced by distributed skyline query processing, as well as the ensuing high computation cost of merging skyline candidates. We thus introduce a new efficient three-phase approach for large scale processing of skyline queries. In the first preprocessing phase, the data is partitioned along the Z-order curve. We utilize a novel data partitioning approach that formulates data partitioning as an optimization problem to minimize the size of intermediate data. In the second phase, each compute node partitions the input data points into disjoint subsets, and then performs the skyline computation on each subset to produce skyline candidates in parallel. In the final phase, we build an index and employ an efficient algorithm to merge the generated skyline candidates. Extensive experiments demonstrate that the proposed skyline algorithm achieves more than one order of magnitude enhancement in performance compared to existing state-of-the-art approaches.
    DOI/handle
    http://dx.doi.org/10.1109/TKDE.2018.2809598
    http://hdl.handle.net/10576/13113
    المجموعات
    • علوم وهندسة الحاسب [‎2482‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video