• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • الهندسة الكيميائية
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Transition metal doped ceria for solar thermochemical fuel production

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2018
    المؤلف
    Takalkar, G.D.
    Bhosale, R.R.
    Kumar, A.
    AlMomani, F.
    Khraisheh, M.
    Shakoor, R.A.
    Gupta, R.B.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In this paper, the effect of doping of transition metal cations on thermal reduction and CO2 splitting ability of Ce0.9M0.1O2−δ materials (where, M = Ni, Zn, Mn, Fe, Cu, Cr, Co, Zr) is investigated by performing multiple thermochemical cycles using a thermogravimetric analyzer. The Ce0.9M0.1O2−δ materials are successfully derived via co-precipitation method and analyzed via powder X-ray diffraction (PXRD), scanning electron microscope (SEM), and BET surface area analyzer (BET). The Ce0.9M0.1O2−δ materials derived are further tested towards their O2 releasing and CO production capacity by performing ten thermochemical CO2 splitting cycles. The obtained TGA results indicate that CeZn and CeFe are capable of releasing higher amounts of O2 as compared to other Ce0.9M0.1O2−δ materials at 1400 °C. Likewise, these two oxides are again observed to be better than other Ce0.9M0.1O2−δ materials in terms of their CO production capacity at 1000 °C. For instance, CeZn and CeFe releases an average of 50.5 and 50.0 μmol of O2/g·cycle during ten thermochemical cycles in which the thermal reduction step is performed at at 1400 °C. Also, the CO production capacity of CeZn and CeFe material is observed to be equal to 103.3 and 96.3 μmol of CO/g·cycle for ten thermochemical cycles in which the CO2 splitting is carried out at 1000 °C. The compositional and thermal stability of all Ce0.9M0.1O2−δ materials is also analyzed after performing ten thermochemical cycles. The phase composition of all the Ce0.9M0.1O2−δ materials remain unchanged after performing ten thermochemical cycles. However, the crystallite size of all the Ce0.9M0.1O2−δ materials increases after performing the ten thermochemical cycles due to the high temperature processing.
    DOI/handle
    http://dx.doi.org/10.1016/j.solener.2018.03.022
    http://hdl.handle.net/10576/13142
    المجموعات
    • الهندسة الكيميائية [‎1196‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video