• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An FPGA implementation of the matching pursuit algorithm for a compressed sensing enabled e-Health monitoring platform

    Thumbnail
    التاريخ
    2019
    المؤلف
    Kerdjidj O.
    Amira A.
    Ghanem K.
    Ramzan N.
    Katsigiannis S.
    Chouireb F.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Wireless monitoring of physiological signals is an evolving direction in personalized medicine and home-based e-Health systems. There are several constraints in designing such systems, with two of the most important being energy consumption and data compression. Compressed Sensing (CS) is an emerging data compression technique that can be used to overcome those constraints. This work presents a low-complexity CS hardware implementation on a Field-Programmable Gate Array (FPGA) for the reconstruction of compressively sensed signals using the matching pursuit (MP) algorithm, targeting health-care applications. The proposed hardware design is based on pipeline optimization of the Programmable Logic (PL) implementation performed on the Zynq FPGA, which provides a significant performance enhancement, namely an increased processing speed and a reduced computational time since it is 115x faster than the Matlab implementation and 75x faster than the Processing System (PS) implementation carried out on the same Zynq FPGA device, while achieving alternative a high-quality signal recovery with a Peak Signal to Noise Ratio (PSNR) of 23.8 dB. Comparisons against other state-of-the-art methods showed that the low complexity of the MP algorithm can be exploited for providing almost similar results to more complex algorithms using 87 583 less Digital Signal Processor (DSP) cores, 28 540 less Block RAMs and 10,300 to 84,700 less Look-Up Table (LUT) slices.
    DOI/handle
    http://dx.doi.org/10.1016/j.micpro.2019.03.007
    http://hdl.handle.net/10576/13413
    المجموعات
    • علوم وهندسة الحاسب [‎2518‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video