• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal cooperation of a hydrogen storage system and fuel cell to supply electrical and thermal loads

    Thumbnail
    Date
    2019
    Author
    Mehrjerdi H.
    Metadata
    Show full item record
    Abstract
    A framework is planned to supply electrical and thermal loads by joint application of a hydrogen storage system (HSS) and a fuel cell. The system, including electrical and thermal loads, is connected to the upstream network. The bidirectional operation is defined for the system, and the system can buy energy from the grid or sell energy to the grid. A water electrolyzer is applied to produce hydrogen from water and store electricity in the form of hydrogen. The stored hydrogen supplies the thermal loads, as well as the fuel cell. The electrical loads are directly connected to the grid and are supplied by the grid. The electricity is received from the fuel cell at hours 17 to 22. When the price of electricity is high, the electrical loads can receive their power from the fuel cell rather than the grid. Additionally, any excess electricity may be sold to the grid. The uncertainty in the thermal and electrical loads is modeled and formulated as stochastic programming. The hydrogen is fed to the fuel cell and the thermal loads. The proposed model minimizes the daily operational cost of the system. The results demonstrate that the daily operational cost of the system is $22.274 USD/day. The bidirectional operation reduces the daily operational cost by about 79%. The unceratinty increases the cost by about 15%.
    DOI/handle
    http://dx.doi.org/10.1063/1.5093630
    http://hdl.handle.net/10576/13507
    Collections
    • Electrical Engineering [‎2823‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video