• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A hybrid forward osmosis/reverse osmosis process for the supply of fertilizing solution from treated wastewater

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Hafiz M.A.
    Hawari A.H.
    Altaee A.
    Metadata
    Show full item record
    Abstract
    This work investigates the application of a hybrid system that combines forward osmosis (FO) and reverse osmosis (RO) processes for the supply of a fertilizing solution that could be used directly for irrigation purposes. In the FO process the feed solution is treated sewage effluent (TSE) and two different types of draw solutions were investigated. The impact of the feed solution and the draw solution flowrates and the membrane orientation on the membrane flux were investigated in the forward osmosis process. RO was used for the regeneration of the draw solution. In the forward osmosis process it was found that the highest membrane flux was 13.2 LMH. The FO process had high rejection rates for total phosphorus and ammonium which were 99% and 97%, respectively. RO achieved 99% total salts rejection rate. Seawater RO (SW30HR) and brackish water RO (BW30LE) membranes were used for the regeneration of the draw solution. The specific power consumption for the regeneration of the draw solution was 2.58 kW h/m3 and 2.18 kW h/m3 for SW30HR and BW30LE membranes, respectively. The final product water had high quality in terms of total dissolved solids concentration but the concentration of phosphorus was slightly higher than recommended due to adding 0.1 M of diammonium phosphate in the draw solution. - 2019 Elsevier Ltd
    DOI/handle
    http://dx.doi.org/10.1016/j.jwpe.2019.100975
    http://hdl.handle.net/10576/13607
    Collections
    • Civil and Environmental Engineering [‎869‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video