• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Patch-based offline signature verification using one-class hierarchical deep learning

    Thumbnail
    Date
    2019
    Author
    Shariatmadari S.
    Emadi S.
    Akbari Y.
    Metadata
    Show full item record
    Abstract
    Automatic processing of offline signature verification (in general) can be considered as a low-cost solution to problems in biometrics in comparison with other solutions (e. g. fingerprint, face verification, etc.). This study aims to present a novel writer-dependent approach to verifying an individual’s signature through offline image patches of their handwriting. The proposed approach is based on hierarchical one-class convolutional neural network for learning only genuine signatures with different feature levels. Since forgeries are not available for each user enrolled in a real application scenario, this study considers signature verification as a one-class problem. In addition, to achieve a clear structure in image, designing hierarchical network architecture based on the coarse-to-fine principle can lead to more precise results. With lower-level features, the network presents a higher visual quality at the boundary area revealing similarities between genuine signatures, while higher-level features can discriminate the quality of the pen strokes to predict forgeries from genuine signatures. The presented system was tested on two Persian databases (PHBC and UTSig) as well as two Latin databases (MCYT-75 and CEDAR). The results of the analyses produced by this method were generally better and more exact in terms of the four signature databases compared with the present state-of-the-art results.
    DOI/handle
    http://dx.doi.org/10.1007/s10032-019-00331-2
    http://hdl.handle.net/10576/13613
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video