Thermochemical CO2 splitting using a sol‐gel–synthesized Mg‐ferrite–based redox system
الملخص
The synthesis, characterization, and application of the MgxFe3−xO4 (MF) redox materials towards conversion of CO2 via thermochemical redox reactions are reported. Sol‐gel method was utilized for the synthesis of MF materials. The derived MF materials were characterized to determine the physicochemical properties using various analytical techniques. PXRD results authorized the phase pure composition, and the SEM analysis designated nanoparticulated morphology of all the synthesized MF materials. The MF materials were further tested to estimate their O2 releasing and CO production ability in multiple thermochemical cycles using a high‐temperature thermogravimetric analyzer (TGA). Attained outcomes specify that the MgFe2O4 (MF10) was superior in terms of the thermal reduction and CO2 splitting capacity as compared with the other MF materials. For instance, MF10 liberated 58.7 μmol of O2/g·cycle and produced 79.6 μmol of CO/g·cycle with an average O2 recovery of 67.7%/cycle in nine thermochemical cycles.
المجموعات
- الهندسة الكيميائية [1174 items ]