• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Civil and Environmental Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pervasive Fibre-optic sensor networks in bridges: A UK case study

    Thumbnail
    Date
    2018
    Author
    Butler L.J.
    Elshafie M.Z.E.B.
    Middleton C.R.
    Metadata
    Show full item record
    Abstract
    Integrating fibre-optic sensor networks in a newly-constructed infrastructure assets enables datadriven performance assessment during its construction and throughout its operational life. As part of a multimillion pound railway infrastructure redevelopment project, two new railway bridges were instrumented with an extensive network of both discrete (fibre Bragg gratings or FBGs) and distributed (based on Brillouin optical time domain reflectometry or BOTDR) fibre optic sensors to measure both strain and temperature throughout construction and in-service. Completed in 2016 in Staffordshire UK, both 'self-sensing' bridges contain more than 500 fibre Bragg grating sensors and over 600 metres of distributed fibre optic sensor cabling. This paper describes the sensing technologies employed, installation techniques for improving sensing robustness, the monitoring programme and objectives, data processing methods and assumptions, and the primary monitoring findings of this project. Results related to measurements of prestress losses in prestressed concrete girders, estimates of steel girder deflection using FBGs and videogrammetry, and assessments of percentage utilization of critical superstructure elements are presented. In terms of future directions, BIM-based environments which incorporate sensor elements and an emerging field of research known as Data-Centric Engineering are introduced as tools to better manage, maintain and learn from the information generated from self-sensing infrastructure.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85066972719&partnerID=40&md5=26c6c2f1a0c2e33f3c8b6bc6913ce0ba
    DOI/handle
    http://hdl.handle.net/10576/13899
    Collections
    • Civil and Environmental Engineering [‎892‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video