• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Combined Decision for Secure Cloud Computing Based on Machine Learning and Past Information

    Thumbnail
    Date
    2019
    Author
    Chkirbene Z.
    Erbad A.
    Hamila R.
    Metadata
    Show full item record
    Abstract
    Cloud computing has been presented as one of the most efficient techniques for hosting and delivering services over the internet. However, even with its wide areas of application, cloud security is still a major concern of cloud computing. In order to protect the communication in such environment, many secure systems have been proposed and most of them are based on attack signatures. These systems are often not very efficient for detecting all the types of attacks. Recently, machine learning technique has been proposed. This means that if the training set does not include enough examples in a particular class, the decision may not be accurate. In this paper, we propose a new firewall scheme named Enhanced Intrusion Detection and Classification (EIDC) system for secure cloud computing environment. EIDC detects and classifies the received traffic packets using a new combination technique called most frequent decision where the nodes' 11In this document we will use the words 'node' and 'user' interchangeably.past decisions are combined with the current decision of the machine learning algorithm to estimate the final attack category classification. This strategy increases the learning performance and the system accuracy. To generate our results, a public available dataset UNSW-NB-15 is used. Our results show that EICD improves the anomalies detection by 24% compared to complex tree.
    DOI/handle
    http://dx.doi.org/10.1109/WCNC.2019.8885566
    http://hdl.handle.net/10576/14000
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video