• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Regression models for performance prediction of counter flow dew point evaporative cooling systems

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Pakari, Ali
    Ghani, Saud
    Metadata
    Show full item record
    Abstract
    Practitioners take more interest in the output conditions of cooling systems than the details of the processes. In this study, regression models are developed that relate input parameters, including operational and geometrical parameters, to selected output responses of counter flow dew point evaporative cooling systems using numerical simulations and response surface methodology. The considered input operational parameters are inlet air temperature, inlet air relative humidity, inlet air velocity, and extraction ratio. The considered geometrical parameters are the channel length and channel width of the cooling system. The selected output responses are outlet air temperature, outlet air relative humidity, and wet-bulb effectiveness. The regression models are developed using a numerical model that is validated using experimental measurements. The predicted outlet temperatures of the counter flow dew point evaporative cooling system using the regression model match the numerical model predictions and experimental measurements within 4% and 10%, respectively. Therefore, the developed regression models provide a simple mean to predict the performance, aid in the design and optimization of counter flow dew point evaporative cooling systems.
    DOI/handle
    http://dx.doi.org/10.1016/j.enconman.2019.02.025
    http://hdl.handle.net/10576/14004
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video