• English
    • العربية
  • العربية 
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
Advanced Search
Advanced Search
View Item 
  •   Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Systems Engineering
  • View Item
  • Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Systems Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    The effect of aluminum oxide on red blood cell integrity and hemoglobin structure at nanoscale

    Thumbnail
    Date
    2019
    Author
    Kahbasi S.
    Samadbin M.
    Attar F.
    Heshmati M.
    Danaei D.
    Rasti B.
    Salihi A.
    Nanakali N.M.Q.
    Aziz F.M.
    Akhtari K.
    Hasan A.
    Falahati M.
    ...show more authors ...show less authors
    Metadata
    Show full item record
    Abstract
    Herein, we explored the interaction of Al2O3 NPs with RBCs and Hb to determine the effect of Al2O3 NPs on hemolytic activity and Hb denaturation. The percentage of hemolysis of extracts and direct contact assays triggered by Al2O3 NPs was calculated by determining supernatant Hb concentration at 540 nm. Far-UV CD and Trp/ANS/acrylamide fluorescence spectroscopic methods were used to determine the structural changes of Hb upon interaction with Al2O3 NPs. Theoretical studies were carried out to display the residues involved in the binding site of Hb with Al2O3 nanocluster as well as the structural changes of Hb after interaction. The results showed that the percentage of hemolysis of extract and direct contact assays induced by Al2O3 NPs were 1.16 and 0.46, respectively. Fluorescence spectroscopy revealed that Al2O3 NPs alter the quaternary structure of the protein; however, CD spectroscopy indicated that the secondary structure of Hb remains almost unchanged. Theoretical study displayed that Al2O3 nanocluster interacts with different residues of protein, and Hb tends to be destabilized at the binding site with nanocluster. This study may be significant in exploring the toxicity profile of Al2O3 NPs for their in vivo implementations. - 2019

    DOI/handle
    http://dx.doi.org/10.1016/j.ijbiomac.2019.07.154
    http://hdl.handle.net/10576/14174
    Collections
    • Mechanical & Industrial Systems Engineering [‎448 ‎ items ]
    • Biomedical Research Center Research [‎287 ‎ items ]

    entitlement


    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of QSpace
      Communities & Collections Publication Date Author Title Subject Type Language
    This Collection
      Publication Date Author Title Subject Type Language

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video