• English
    • العربية
  • العربية 
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
    • QSpace policies
Advanced Search
Advanced Search
View Item 
  •   Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University QSpace
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Minimum transmission power loss in multi-terminal HVDC systems: A general methodology for radial and mesh networks

    Icon
    View/Open
    1-s2.0-S1110016818302321-main.pdf (1.442Mb)
    Date
    2019
    Author
    Sayed S.
    Massoud A.
    Metadata
    Show full item record
    Abstract
    The significant increase of high-power renewable energy sources (e.g., off-shore wind energy systems) in the power networks, has introduced Multi-Terminal High-Voltage DC (MTDC) grids as a prominent approach for transmitting power with high reliability, security, and efficiency. Nonetheless, MTDC systems introduce several challenges pertinent to operation. This paper investigates optimal power flow in MTDC networks to minimize the transmission power loss via DC voltage control, which is an essential approach for the MTDC network operation to maintain the transmission balance and grid stability. In this paper, a generalized approach for minimum transmission power loss in radial and mesh MTDC networks is presented. Voltage droop control is employed in the radial network, with droop characteristics tuned for optimal power flow, which is supported by an optimization approach. Radial MTDC networks with either a common interconnection node or a common interconnection line are considered. While for the mesh network and due to the difficulty of adjusting the droop gains, an optimization algorithm is merely devised for optimal power flow. A modified CIGRE B4 network is employed in this paper to investigate the presented concept considering several scenarios. Simulation results using the Matlab platform are shown to validate the paper's contribution.

    DOI/handle
    http://dx.doi.org/10.1016/j.aej.2018.12.007
    http://hdl.handle.net/10576/14248
    Collections
    • Electrical Engineering [‎620 ‎ items ]

    entitlement


    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of QSpace
      Communities & Collections Publication Date Author Title Subject Type Language
    This Collection
      Publication Date Author Title Subject Type Language

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission QSpace policies

    Help

    Item Submission Publisher policiesUser guides FAQs

    QSpace is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video