• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    CO2 capture from water-gas shift process plant: Comparative bench-scale pilot plant investigation of MDEA-PZ blend vs novel MDEA activated by 1,5-diamino-2-methylpentane

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Nwaoha C.
    Tontiwachwuthikul P.
    Benamor A.
    Metadata
    Show full item record
    Abstract
    This research is a bench-scale pilot plant investigation of novel amine solvent blend containing MDEA and 1,5-diamino-2-methylpentane (DA2MP) for CO2 capture from water-gas shift process plant (H2 production). The CO2 concentration used in this study (50 vol.% CO2 with N2 balance) is similar to that of the water-gas shift product gas. The CO2 capture performance of the MDEA-DA2MP blend was compared to the standard 3 kmol/m3 MDEA-0.5 kmol/m3 PZ blend (34.4 wt.% MDEA-5 wt.% PZ). The low concentration of PZ in this study is because of the chemical toxicity of PZ and possible precipitation at medium to high concentration. The MDEA concentration in the MDEA-DA2MP blend was kept constant at 3 kmol/m3 while the DA2MP was varied from 0.5 kmol/m3 (6.75 wt.%) to 1.5 kmol/m3 (20.3 wt.%). The pilot plant analysis was performed at a gas flow rate, amine solution flow rate, and reboiler temperature of 14 SLPM, 50 mL/min, and 120 C respectively. Pilot plant results revealed that the higher MDEA-DA2MP blend concentration possesses higher CO2 capture efficiency (up to 24%), higher CO2 absorption rate (up to 23.5%) and higher absorber mass transfer coefficient (up to 23.9%) compared to the MDEA-PZ blend. It was also discovered that the high MDEA-DA2MP concentration has lower regeneration energy (up to 25.4%), lower initial amine solution utilized (up to 20.5%), lower desorber mass transfer coefficient (up to 32.5%) compared to the MDEA-PZ blend. However, the optimal amine concentration is the 3 kmol/m3 MDEA-1 kmol/m3 DA2MP blend. Overall results show that the MDEA-DA2MP blend can offer a cost-effective and energy efficient CO2 capture compared to MDEA-PZ.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijggc.2019.01.009
    http://hdl.handle.net/10576/14262
    Collections
    • GPC Research [‎505‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video