• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Edge-based compression and classification for smart healthcare systems: concept, implementation and evaluation

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2019
    المؤلف
    Awad Abdellatif A.
    Emam A.
    Chiasserini C.-F.
    Mohamed A.
    Jaoua A.
    Ward R.
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Smart healthcare systems require recording, transmitting and processing large volumes of multimodal medical data generated from different types of sensors and medical devices, which is challenging and may turn some of the remote health monitoring applications impractical. Moving computational intelligence to the network edge is a promising approach for providing efficient and convenient ways for continuous-remote monitoring. Implementing efficient edge-based classification and data reduction techniques are of paramount importance to enable smart healthcare systems with efficient real-time and cost-effective remote monitoring. Thus, we present our vision of leveraging edge computing to monitor, process, and make autonomous decisions for smart health applications. In particular, we present and implement an accurate and lightweight classification mechanism that, leveraging some time-domain features extracted from the vital signs, allows for a reliable seizures detection at the network edge with precise classification accuracy and low computational requirement. We then propose and implement a selective data transfer scheme, which opts for the most convenient way for data transmission depending on the detected patient's conditions. In addition to that, we propose a reliable energy-efficient emergency notification system for epileptic seizure detection, based on conceptual learning and fuzzy classification. Our experimental results assess the performance of the proposed system in terms of data reduction, classification accuracy, battery lifetime, and transmission delay. We show the effectiveness of our system and its ability to outperform conventional remote monitoring systems that ignore data processing at the edge by: (i) achieving 98.3% classification accuracy for seizures detection, (ii) extending battery lifetime by 60%, and (iii) decreasing average transmission delay by 90%.
    DOI/handle
    http://dx.doi.org/10.1016/j.eswa.2018.09.019
    http://hdl.handle.net/10576/14413
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video