• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Poly(aniline-co-2-hydroxyaniline): towards the thermal stability and higher solubility of polyaniline

    Thumbnail
    Date
    2019
    Author
    Waware U.S.
    Hamouda A.M.S.
    Rashid M.
    Metadata
    Show full item record
    Abstract
    Here, we adopted a donor-acceptor criteria for charge transfer and synthesize the thermally stable copolymers of poly(aniline-co-2-hydroxyaniline) (PA-co-2-HA) by in-situ copolymerization method having different compositions. The co-monomers used in the synthesis were aniline and 2-hydroxyaniline to obtain the (PA-co-2-HA). UV-Vis spectroscopy was used to see the change in bandgap (E g ) between HOMO and LUMO for the electronic transitions. FT-IR analysis has been performed to get functional details of polymers. The electrical conductivity copolymer was recorded by the two-probe method. The conductivity of copolymer depends upon the amount of molar feed in the composition. To probe the surface morphology and roughness profile, atomic force microscopy (AFM) has been applied. The thermal stability of the copolymers (PA-co-2-HA)s has been studied by thermogravimetric analysis (TGA). The particle size of the copolymer varies in the range of 100-500 nm as determined by particle size analyzer. The SEM analysis has been carried out to study the morphological behavior of the copolymer. 1 H-NMR spectroscopy was used to study the structural details of the protons present in the copolymer.
    DOI/handle
    http://dx.doi.org/10.1007/s00339-019-2418-y
    http://hdl.handle.net/10576/14467
    Collections
    • Mechanical & Industrial Engineering [‎1509‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video