• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier

    Thumbnail
    Date
    2019
    Author
    Eren L.
    Ince T.
    Kiranyaz S.
    Metadata
    Show full item record
    Abstract
    Timely and accurate bearing fault detection and diagnosis is important for reliable and safe operation of industrial systems. In this study, performance of a generic real-time induction bearing fault diagnosis system employing compact adaptive 1D Convolutional Neural Network (CNN) classifier is extensively studied. In the literature, although many studies have developed highly accurate algorithms for detecting bearing faults, their results have generally been limited to relatively small train/test data sets. As opposed to conventional intelligent fault diagnosis systems that usually encapsulate feature extraction, feature selection and classification as distinct blocks, the proposed system takes directly raw time-series sensor data as input and it can efficiently learn optimal features with the proper training. The main advantages of the 1D CNN based approach are 1) its compact architecture configuration (rather than the complex deep architectures) which performs only 1D convolutions making it suitable for real-time fault detection and monitoring, 2) its cost effective and practical real-time hardware implementation, 3) its ability to work without any pre-determined transformation (such as FFT or DWT), hand-crafted feature extraction and feature selection, and 4) its capability to provide efficient training of the classifier with limited size of training data set and limited number of BP iterations. Effectiveness and feasibility of the 1D CNN based fault diagnosis method is validated by applying it to two commonly used benchmark real vibration data sets and comparing the results with the other competing intelligent fault diagnosis methods.
    DOI/handle
    http://dx.doi.org/10.1007/s11265-018-1378-3
    http://hdl.handle.net/10576/14476
    Collections
    • Electrical Engineering [‎2821‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video