• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Mobility Management for Intro/Inter Domain Handover in Software-Defined Networks

    Thumbnail
    Date
    2019
    Author
    Bi Y.
    Han G.
    Lin C.
    Guizani M.
    Wang X.
    Metadata
    Show full item record
    Abstract
    To provide satisfactory Quality of Service (QoS) on the move, efficient mobility management is indispensable to provide mobile users with seamless and ubiquitous wireless connectivity. However, both the conventional centralized mobility architecture and the upcoming distributed mobility management face fundamental challenges such as sub-optimal routing, scalability, and so on. The emerging software-defined networking (SDN) architecture can efficiently manage network operations, and accordingly provides a new direction to address the challenges in mobility management. In this paper, we propose an SDN-based Mobility Management (SDN-MM) scheme to support seamless Intro/Inter domain handover with route optimization. SDN-MM decouples mobility management and packet forwarding functions by installing route optimizing and mobility control logics in an SDN controller, but exempting it from traffic redirecting. In SDN-MM, a comprehensive set of signaling operations are designed in order to provide transparent and efficient mobility support for ongoing sessions in each handover scenario, which prevents packet loss and tunneling overhead, and accordingly provide improved QoS to mobile users. For data communications, an SDN controller in SDN-MM pre-calculates the optimal end-to-end route before a handover, and decides whether to migrate traffic to the route by balancing the performance gain and the signaling overhead, which greatly improves bandwidth resource utilization. Finally, we develop a novel analytical model to evaluate the performance of SDN-MM, including signaling overhead, handover latency, and packet delivery cost. The simulation results have been provided to demonstrate that the proposed SDN-MM can greatly improve handover performance and maintain high resource utilization efficiency as well. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/JSAC.2019.2927097
    http://hdl.handle.net/10576/14565
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video