• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2020)
  • Theme 2: Materials and Transportation Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • University Publications
  • QU Conference Proceedings
  • International Conference on Civil Infrastructure and Construction (CIC 2020)
  • Theme 2: Materials and Transportation Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Comparison of the Mechanical Behavior of Railroad Ballast in a Box Test under Sinusoidal and Realistic Train Loadings Using Discrete Element Method

    Thumbnail
    View/Open
    CIC2020_ Artcile32.pdf (1.609Mb)
    Date
    2020
    Author
    Alabbasi, Yahia
    Hussein, Mohammed
    Metadata
    Show full item record
    Abstract
    A ballasted track is a popular type of railway track and its use is increasing all over the world. A ballasted track consists of different structural elements like rails, fasteners, sleepers, ballast layer, sub-ballast layer and subgrade. A ballast layer is considered as the main structural element of ballasted tracks; it has a significant contribution to track stability and alignment. After service, periodical maintenance of ballast layer is required to maintain its functionality. Ballast maintenance is a cost and time expensive operation. Better understanding of ballast mechanical behavior leads to better ballast design and efficient maintenance. Discrete Element Method has been used extensively in the literature to understand the mechanical behavior of railroad ballast in a box test. Nevertheless, in the literature most of the studies simulate train loading as pure continuous sinusoidal loading unlike the real train loading. This paper aims to investigate the influence of the simulated train loading on the mechanical behavior of railroad ballast after 1000 loading cycles. There are two simulated train-loading cases used in this study for comparison purposes; continuous sinusoidal loading and a more realistic train loading utilizing the Beam on Elastic Foundation theory. The results show a difference of ballast vertical settlement up to 14% between the two simulated train-loading cases.
    URI
    http://www.cic.qa
    DOI/handle
    http://dx.doi.org/10.29117/cic.2020.0039
    http://hdl.handle.net/10576/14725
    Collections
    • Civil and Environmental Engineering [‎863‎ items ]
    • Theme 2: Materials and Transportation Engineering [‎43‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video