• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
    • الأسئلة الأكثر تكراراً
  • عن المستودع الرقمي
    • الرؤية والرسالة
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Classification of corneal nerve images using machine learning techniques

    Thumbnail
    عرض / فتح
    4530-Article Text-18760-2-10-20190930.pdf (567.3Kb)
    4530-Article Text-18760-2-10-20190930.pdf (567.3Kb)
    التاريخ
    2019
    المؤلف
    Salahuddin, Tooba
    Qidwai, Uvais
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Recent research shows that small nerve fiber damage is an early detector of neuropathy. These small nerve fibers are present in the human cornea and can be visualized through the use of a corneal confocal microscope. A series of images can be acquired from the subbasal nerve plexus of the cornea. Before the images can be quantified for nerve loss, a human expert manually traces the nerves in the image and then classifies the image as having neuropathy or not. Some nerve tracing algorithms are available in the literature, but none of them are reported as being used in clinical practice. An alternate practice is to visually classify the image for neuropathy without quantification. In this paper, we evaluate the potential of various machine learning techniques for automating corneal nerve image classification. First, the images are down-sampled using discrete wavelet transform, filtering and a number of morphological operations. The resulting binary image is used for extracting characteristic features of the image. This is followed by training the classifier on the extracted features. The trained classifier is then used for predicting the state of the nerves in the images. Our experiments yield a classification accuracy of 0.91 reflecting the effectiveness of the proposed method. Universiti Tun Hussein Onn Malaysia Publisher's Office.
    DOI/handle
    http://dx.doi.org/10.30880/ijie.2019.11.03.001
    http://hdl.handle.net/10576/14961
    المجموعات
    • علوم وهندسة الحاسب [‎2428‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشرأدلة المستخدمالأسئلة الأكثر تكراراً

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا | ارسل ملاحظاتك
    اتصل بنا | ارسل ملاحظاتك | جامعة قطر

     

     

    Video