• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Electrical Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Security-Enhanced SC-FDMA Transmissions Using Temporal Artificial-Noise and Secret Key Aided Schemes

    Thumbnail
    View/Open
    Security-Enhanced SC-FDMA Transmissions Using Temporal Artificial-Noise and Secret Key Aided Schemes.pdf (7.093Mb)
    Date
    2019
    Author
    Marzban, Mohamed F.
    El Shafie, Ahmed
    Al-Dhahir, Naofal
    Hamila, Ridha
    Metadata
    Show full item record
    Abstract
    We investigate the physical-layer security of uplink single-carrier frequency-division multiple-access (SC-FDMA) systems. Multiple users, Alices, send confidential messages to a common legitimate base-station, Bob, in the presence of an eavesdropper, Eve. To secure the legitimate transmissions, each user superimposes an artificial noise (AN) signal on the time-domain SC-FDMA data symbol. We reduce the computational and storage requirements at Bob's receiver by assuming simple per-sub-channel detectors. We assume that Eve has global channel knowledge of all links in addition to high computational capabilities, where she adopts high-complexity detectors such as single-user maximum likelihood (ML), multi-user minimum-mean-square-error, and multi-user ML. We analyze the correlation properties of the time-domain AN signal and illustrate how Eve can exploit them to reduce the AN effects. We prove that the number of useful AN streams that can degrade Eve's signal-to-noise ratio is dependent on the channel memories of Alices-Bob and Alices-Eve links. Furthermore, we enhance the system security for the case of partial Alices-Bob channel knowledge at Eve, where Eve only knows the precoding matrices of the data and AN signals instead of knowing the entire Alices-Bob channel matrices, and propose a hybrid security scheme that integrates temporal AN with channel-based secret key extraction. - 2019 IEEE.
    DOI/handle
    http://dx.doi.org/10.1109/ACCESS.2019.2893801
    http://hdl.handle.net/10576/15103
    Collections
    • Electrical Engineering [‎2840‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video