• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Student Thesis & Dissertations
  • College of Engineering
  • Computing
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Staticand Dynamic Facial Emotion Recognition Using Neural Network Models

    Thumbnail
    View/Open
    Ealaf Hussein_OGS Approved Thesis.pdf (5.583Mb)
    Date
    2020-06
    Author
    Hussein, Ealaf Sayed Ahmed
    Metadata
    Show full item record
    Abstract
    Emotion recognition is the process of identifying human emotions. It is made possible by processing various modalities including facial expressions, speech signals, biometricsignals,etc. Withtheadvancementsincomputingtechnologies,FacialEmo tion Recognition (FER) became important for several applications in which the user’s emotional state is required, such as emotional training for autistic children. The recent years witnessed a major leap in Artificial Intelligence(AI),specially neural networks for computer vision applications. In this thesis, we investigate the application of AI algo rithms for FER from static and dynamic data. Our experiments address the limitations and challenges of previous works such as limited generalizability due to the datasets. We compare the performance of machine learning classifiers and convolution neural networks (CNNs) for FER from static data (images). Moreover, we study the perfor mance of the proposed CNN for dynamic FER(videos),in addition to Long-ShortTerm Memory(LSTM)inaCNN-LSTM hybrid approach to utilize the temporal information in the videos. The proposed CNN architecture out performed the other classifiers with an accuracy of 86.5%. It also outperformed the hybrid approach for dynamic FER which achievedanaccuracyof74.6%
    DOI/handle
    http://hdl.handle.net/10576/15160
    Collections
    • Computing [‎103‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video