• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DART: A large dataset of dialectal Arabic tweets

    Thumbnail
    Date
    2019
    Author
    Alsarsour, Israa
    Mohamed, Esraa
    Suwaileh, Reem
    Elsayed, Tamer
    Metadata
    Show full item record
    Abstract
    In this paper, we present a new large manually-annotated multi-dialect dataset of Arabic tweets that is publicly available. The Dialectal ARabic Tweets (DART) dataset has about 25K tweets that are annotated via crowdsourcing and it is well-balanced over five main groups of Arabic dialects: Egyptian, Maghrebi, Levantine, Gulf, and Iraqi. The paper outlines the pipeline of constructing the dataset from crawling tweets that match a list of dialect phrases to annotating the tweets by the crowd. We also touch some challenges that we face during the process. We evaluate the quality of the dataset from two perspectives: the inter-annotator agreement and the accuracy of the final labels. Results show that both measures were substantially high for the Egyptian, Gulf, and Levantine dialect groups, but lower for the Iraqi and Maghrebi dialects, which indicates the difficulty of identifying those two dialects manually and hence automatically.
    URI
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059884453&partnerID=40&md5=b3a515e144e74a7cb819868d62d1b814
    DOI/handle
    http://hdl.handle.net/10576/15265
    Collections
    • Computer Science & Engineering [‎2484‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video