• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    DART: A large dataset of dialectal Arabic tweets

    Thumbnail
    التاريخ
    2019
    المؤلف
    Alsarsour, Israa
    Mohamed, Esraa
    Suwaileh, Reem
    Elsayed, Tamer
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    In this paper, we present a new large manually-annotated multi-dialect dataset of Arabic tweets that is publicly available. The Dialectal ARabic Tweets (DART) dataset has about 25K tweets that are annotated via crowdsourcing and it is well-balanced over five main groups of Arabic dialects: Egyptian, Maghrebi, Levantine, Gulf, and Iraqi. The paper outlines the pipeline of constructing the dataset from crawling tweets that match a list of dialect phrases to annotating the tweets by the crowd. We also touch some challenges that we face during the process. We evaluate the quality of the dataset from two perspectives: the inter-annotator agreement and the accuracy of the final labels. Results show that both measures were substantially high for the Egyptian, Gulf, and Levantine dialect groups, but lower for the Iraqi and Maghrebi dialects, which indicates the difficulty of identifying those two dialects manually and hence automatically.
    معرّف المصادر الموحد
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85059884453&partnerID=40&md5=b3a515e144e74a7cb819868d62d1b814
    DOI/handle
    http://hdl.handle.net/10576/15265
    المجموعات
    • علوم وهندسة الحاسب [‎2518‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video