• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Using Mandatory Concepts for Knowledge Discovery and Data Structuring

    Thumbnail
    Date
    2019
    Author
    Elloumi, Samir
    Ben Yahia, Sadok
    Al Ja'am, Jihad
    Metadata
    Show full item record
    Abstract
    A data scientist could apply several machine learning approaches in order to discover valuable knowledge from the data. While applying several techniques, he might discover that some pieces of knowledge are invariant, what ever the technique he used. We consider such knowledge as mandatory concepts, i.e., unavoidable knowledge to be discovered. As interesting property, a mandatory concept is characterized by a non-shared isolated point, that relates pieces of data, e.g., an object to a property, a document to specific words, an image to a specific topic, etc. Hence, the isolated points allow to make the distinction between the concepts. In this paper, we present a new approach for mandatory concepts extraction by making a level-based properties composition. Hence, the N-Composites isolated points are identified and constitute a key element for mandatory concept localization. We experiment our new algorithm by considering the coverage quality metrics. - 2019, Springer Nature Switzerland AG.
    DOI/handle
    http://dx.doi.org/10.1007/978-3-030-27618-8_27
    http://hdl.handle.net/10576/15656
    Collections
    • Computer Science & Engineering [‎2485‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video