• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Study on the effects of tool tile angle, offset and plunge depth on friction stir welding of poly(methyl methacrylate) T-joint

    Thumbnail
    Date
    2019
    Author
    Eyvazian, Arameh
    Hamouda, Abdel Magid
    Aghajani Derazkola, Hamed
    Elyasi, Majid
    Metadata
    Show full item record
    Abstract
    The effects of tilt angle (TTA), plunge depth (TPD) and offset (TO) of tool in friction stir welding of poly(methyl methacrylate) T-joint were investigated. To understand better the effects of process parameter, thermomechanical simulation of joint was assessed. The results seem to show that at higher TPD and TTA, frictional heat increases. Woven tissue structure joint line forms after friction stir welding of poly(methyl methacrylate) sheets. The distance of woven layers was affected by TPD and TTA, while TO do not significantly affect heat generation of joint. The best material flow and adequate heat are generated at 0 mm TA, 2� TTA and 0.2 mm TPD, respectively. The highest flexural and tensile strength of friction stir welded joint were approximately 93% and 90% of as-received poly(methyl methacrylate), respectively. Crack forking was detected on the fractured surface of flexural samples and crack path was detected in the vicinity of shrinkage holes at fracture surface of tensile samples. These holes and degradation of poly(methyl methacrylate) during friction stir welding process decrease strength and hardness of the joint. - IMechE 2019.
    DOI/handle
    http://dx.doi.org/10.1177/0954405419889180
    http://hdl.handle.net/10576/15660
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video