• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Glandular structure-guided classification of microscopic colorectal images using deep learning

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2019
    Author
    Awan, Ruqayya
    Al-Maadeed, Somaya
    Al-Saady, Rafif
    Bouridane, Ahmed
    Metadata
    Show full item record
    Abstract
    In this work, we propose to automate the pre-cancerous tissue abnormality analysis by performing the classification of image patches using a novel two-stage convolutional neural network (CNN) based framework. Rather than training a model with features that may correlate among various classes, we propose to train a model using the features which vary across the different classes. Our framework processes the input image to locate the region of interest (glandular structures) and then feeds the processed image to a classification model for abnormality prediction. Our experiments show that our proposed approach improves the classification performance by up to 7% using CNNs and more than 10% while using texture descriptors. When testing with gland segmented images, our experiments reveal that the performance of our classification approach is dependent on the gland segmentation approach which is a key task in gland structure-guided classification. - 2019
    DOI/handle
    http://dx.doi.org/10.1016/j.compeleceng.2019.106450
    http://hdl.handle.net/10576/15678
    Collections
    • Computer Science & Engineering [‎2429‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video