• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • About QSpace
    • Vision & Mission
  • Help
    • Item Submission
    • Publisher policies
    • User guides
      • QSpace Browsing
      • QSpace Searching (Simple & Advanced Search)
      • QSpace Item Submission
      • QSpace Glossary
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Arts & Sciences
  • Materials Science & Technology
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Dual Imprinted Polymer Thin Films via Pattern Directed Self-Organization

    Thumbnail
    Date
    2017
    Author
    Grolman, Danielle
    Dbandyopadhyay, iya
    Al-Enizi, Abdullah
    Elzatahry, Ahmed
    Karim, Alamgir
    Metadata
    Show full item record
    Abstract
    Synthetic topographically patterned films and coatings are typically contoured on one side, yet many of nature's surfaces have distinct textures on different surfaces of the same object. Common examples are the top and bottom sides of the butterfly wing or lotus leaf, onion shells, and the inside versus outside of the stem of a flower. Inspired by nature, we create dual (top and bottom) channel patterned polymer films. To this end, we first develop a novel fabrication method to create ceramic line channel relief structures by converting the oligomeric residue of stamped poly(dimethylsiloxane) (PDMS) nanopatterns on silicon substrates to glass (SiOx, silica) by ultraviolet-ozone (UVO) exposure. These silica patterned substrates are flow coated with polystyrene (PS) films and confined within an identically patterned top confining soft PDMS elastomer film. Annealing of the sandwich structures drives the PS to rapidly mold fill the top PDMS pattern in conjunction with a dewetting tendency of the PS on the silica pattern. Varying the film thickness h, from less than to greater than the pattern height, and varying the relative angle between the top-down and bottom-up patterned confinement surfaces create interesting uniform and nonuniform digitized defects in PS channel patterns, as also a defect-free channel regime. Our dual patterned polymer channels provide a novel fabrication route to topographically imprinted Moire patterns (whose applications range from security encrypting holograms to sensitive strain gauges), and their basic laser light diffractions properties are illustrated and compared to graphical simulations and 2D-FFT of real-space AFM channel patterns. While traditional "geometrical" and "fringe" Moire patterns function by superposition of two misaligned optical patterned transmittance gratings, our topographic pattern gratings are quite distinct and may allow for more unique holographic optical characteristics with further development.
    DOI/handle
    http://dx.doi.org/10.1021/acsami.7b00779
    http://hdl.handle.net/10576/15735
    Collections
    • Materials Science & Technology [‎341‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policies

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us
    Contact Us | QU

     

     

    Video