The impact of stealthy attacks on smart grid performance: Tradeoffs and implications
Abstract
The smart grid is envisioned to significantly enhance the efficiency of energy consumption, by utilizing two-way communication channels between consumers and operators. For example, operators can opportunistically leverage the delay tolerance of energy demands in order to balance the energy load over time, and hence, reduce the total operational cost. This opportunity, however, comeswith security threats, as the grid becomesmore vulnerable to cyber-attacks. In this paper, we study the impact of such malicious cyber-attacks on the energy efficiency of the grid in a simplified setup. More precisely, we consider a simple model where the energy demands of the smart grid consumers are intercepted and altered by an active attacker before they arrive at the operator, who is equipped with limited intrusion detection capabilities. We formulate the resulting optimization problems faced by the operator and the attacker and propose several scheduling and attack strategies for both parties. Interestingly, our results show that, as opposed to facilitating cost reduction in the smart grid, increasing the delay tolerance of the energy demands potentially allows the attacker to force increased costs on the system. This highlights the need for carefully constructed and robust intrusion detection mechanisms at the operator. - 2016 IEEE.
Collections
- Computer Science & Engineering [2402 items ]