عرض بسيط للتسجيلة

المؤلفAkbari, Younes
المؤلفHassen, Hanadi
المؤلفSubramanian, Nandhini
المؤلفKunhoth, Jayakanth
المؤلفAl-Maadeed, Somaya
المؤلفAlhajyaseen, Wael
تاريخ الإتاحة2020-09-21T08:05:52Z
تاريخ النشر2020
اسم المنشور2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT)
الاقتباسY. Akbari, H. Hassen, N. Subramanian, J. Kunhoth, S. Al-Maadeed and W. Alhajyaseen. (2020). A vision-based zebra crossing detection method for people with visual impairments. 2020 IEEE International Conference on Informatics, IoT, and Enabling Technologies (ICIoT), Doha, Qatar, pp. 118-123. doi: 10.1109/ICIoT48696.2020.9089622.
معرّف المصادر الموحدhttp://dx.doi.org/10.1109/ICIoT48696.2020.9089622
معرّف المصادر الموحدhttp://hdl.handle.net/10576/16213
الملخصSafe navigation for visually impaired is challenging without assistive technology. This paper proposes a pedestrian crossing detection approach to help visually impaired people. We introduce the use of multiple convolutional neural networks (CNNs) by utilizing wavelet transform subbands as inputs in which networks are trained to detect zebra crossing. In our method, the original image is decomposed into wavelet subbands, and the input images are constructed from image approximation based on the coefficients of three subbands. In the multiple networks approach, the segmentation results of the networks were integrated to create the final segmentation map. The results presented in this study prove that our method fully outperforms the SegNet networks and other state-of-the-art results using the Synthia database.
اللغةen
الناشرIEEE
الموضوعvisual impairment
zebra crossing detection
SegNet
wavelet transform
multiple convolutional neural networks
العنوانA vision-based zebra crossing detection method for people with visual impairments
النوعConference Paper
الصفحات118-123
dc.accessType Abstract Only


الملفات في هذه التسجيلة

الملفاتالحجمالصيغةالعرض

لا توجد ملفات لها صلة بهذه التسجيلة.

هذه التسجيلة تظهر في المجموعات التالية

عرض بسيط للتسجيلة