Reinforcement learning-based control of drug dosing for cancer chemotherapy treatment
المؤلف | Padmanabhan, Regina |
المؤلف | Meskin, Nader |
المؤلف | Haddad, Wassim M. |
تاريخ الإتاحة | 2020-09-24T08:11:56Z |
تاريخ النشر | 2017 |
اسم المنشور | Mathematical Biosciences |
المصدر | Scopus |
الرقم المعياري الدولي للكتاب | 255564 |
الملخص | The increasing threat of cancer to human life and the improvement in survival rate of this disease due to effective treatment has promoted research in various related fields. This research has shaped clinical trials and emphasized the necessity to properly schedule cancer chemotherapy to ensure effective and safe treatment. Most of the control methodologies proposed for cancer chemotherapy scheduling treatment are model-based. In this paper, a reinforcement learning (RL)-based, model-free method is proposed for the closed-loop control of cancer chemotherapy drug dosing. Specifically, the Q-learning algorithm is used to develop an optimal controller for cancer chemotherapy drug dosing. Numerical examples are presented using simulated patients to illustrate the performance of the proposed RL-based controller. 1 2017 Elsevier Inc. |
راعي المشروع | This publication was made possible by the GSRA grant No. GSRA1-1-1128-13016 from the Qatar National Research Fund (a member of Qatar Foundation). The findings achieved herein are solely the responsibility of the authors. |
اللغة | en |
الناشر | Elsevier Inc. |
الموضوع | Active drug dosing Chemotherapy control Reinforcement learning |
النوع | Article |
الصفحات | 20-Nov |
رقم المجلد | 293 |
تحقق من خيارات الوصول
الملفات في هذه التسجيلة
الملفات | الحجم | الصيغة | العرض |
---|---|---|---|
لا توجد ملفات لها صلة بهذه التسجيلة. |
هذه التسجيلة تظهر في المجموعات التالية
-
الهندسة الكهربائية [2811 items ]