• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Computer Science & Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Measuring and optimising performance of an offline text writer identification system in terms of dimensionality reduction techniques

    Thumbnail
    Date
    2017
    Author
    Durou, Amal
    Aref, Ibrahim
    Elbendak, Mosa
    Al-Maadeed, Sumaya
    Bouridane, Ahmed
    Metadata
    Show full item record
    Abstract
    Usually, most of the data generated in real-world such as images, speech signals, or fMRI scans has a high dimensionality. Therefore, dimensionality reduction techniques can be used to reduce the number of variables in that data and then the system performance can be improved. Because the processing of the high dimensional data leads the increase of complexity both in execution time and memory usage. In the previous work, we developed an offline writer identification system using a combination of Oriented Basic Image features (OBI) and the concept of graphemes codebook. In order to measure and optimise the system performance, a variety of nonlinear dimensionality reduction algorithms such as Kernel Principal Component Analysis (KPCA), Isomap, Locally linear embedding (LLE), Hessian LLE and Laplacian Eigenmaps have been used. The performance has been evaluated based on IAM dataset for English handwriting and ICFHR 2012 dataset for Arabic handwriting. The results obtained indicated the system performance based KPCA was better than the other reduction techniques that have been used and investigated in this work.
    DOI/handle
    http://dx.doi.org/10.1109/EST.2017.8090393
    http://hdl.handle.net/10576/16333
    Collections
    • Computer Science & Engineering [‎2428‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video