• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Enhancing mode I inter-laminar fracture toughness of aluminum/fiberglass fiber-metal laminates by combining surface pre-treatments

    Thumbnail
    View/Open
    Publisher version (You have accessOpen AccessIcon)
    Publisher version (Check access options)
    Check access options
    Date
    2017
    Author
    Laban, O.
    Mahdi, E.
    Metadata
    Show full item record
    Abstract
    This paper investigates the influence of multiple surface treatment, including chemical etching and plasma treatments, on the mode I inter-laminar fracture toughness () of aluminum/fiberglass fiber-metal laminates. Laser technology was employed to further enhance aluminum substrate surface morphology to promote micro-mechanical interlocks (MMI) with non-crimp [0°/−45°/90°/+45°] fiberglass/epoxy resin. A vacuum assisted resin transfer molding technique was used to produce the hybrid laminates. Five surface pre-treatments were compared; N2 plasma, O2 plasma, alkaline etch, laser, and laser+N2 plasma. Alkaline etched specimens absorbed the highest energy (237.8%) whereas laser+N2 plasma treated specimens exhibited the highest (73.2%). In addition, when MMI is promoted, the mechanical locks acted as localized obstacles resisting the propagating crack and caused transition of failure mode from adhesive to adhesive-cohesive mixed mode.
    DOI/handle
    http://dx.doi.org/10.1016/j.ijadhadh.2017.08.008
    http://hdl.handle.net/10576/16438
    Collections
    • Mechanical & Industrial Engineering [‎1499‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video