• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Research Units
  • Gas Processing Center
  • GPC Research
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Corrosion behavior of API X100 steel material in a hydrogen sulfide environment

    Thumbnail
    Date
    2017
    Author
    Okonkwo, Paul C.
    Shakoor, Rana Abdul
    Benamor, Abdelbak
    Mohamed, Adel Mohamed Amer
    Al-Marri, Mohammed Jaber F A
    Metadata
    Show full item record
    Abstract
    Recently, the API X100 steel has emerged as an important pipeline material for transportation of crude oil and natural gas. At the same time, the presence of significant amounts of hydrogen sulfide (H2S) in natural gas and crude oil cause pipeline materials to corrode, which affects their integrity. In this study, the effect of H2S concentration on the corrosion behavior of API X100 in 3.5% NaCl solution is presented. TheH2S gas was bubbled into saline solutions for different durations, and the corrosion tests were then performed using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscopy (SEM) techniques were used to characterize the corroded surface. The results indicate that the corrosion rate of API X100 steel decreases with increasing H2S bubbling time due to the increase in H2S concentration in 3.5% NaCl solutions. It is noticed that an accumulation of a critical amount of hydrogen in the metal can result in hydrogen-induced crack initiation and propagation. It was further observed that, when the stress limit of a crystalline layer is exceeded, micro-cracking of the formed protective sulfide layer (mackinawite) occurs on the API X100 steel surface, which may affect the reliability of the pipeline system.
    DOI/handle
    http://dx.doi.org/10.3390/met7040109
    http://hdl.handle.net/10576/16474
    Collections
    • GPC Research [‎501‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video