• English
    • العربية
  • English
  • تسجيل الدخول
  • جامعة قطر
  • مكتبة جامعة قطر
  •  الصفحة الرئيسية
  • الوحدات والمجموعات
  • عن المستودع الرقمي
    • الرؤية والرسالة
  • المساعدة
    • إرسال الأعمال الأكاديمية
    • سياسات الناشر
    • أدلة المستخدم
      • عرض المستودع الرقمي
      • البحث في المستودع الرقمي (البحث البسيط والبحث المتقدم)
      • ارسال عملك للمستودع الرقمي
      • مصطلحات المستودع الرقمي
عرض التسجيلة 
  •   مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  • مركز المجموعات الرقمية لجامعة قطر
  • المستودع الرقمي لجامعة قطر
  • أكاديمية
  • مساهمة أعضاء هيئة التدريس
  • كلية الهندسة
  • علوم وهندسة الحاسب
  • عرض التسجيلة
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Optimal virtual network function placement in multi-cloud service function chaining architecture

    Thumbnail
    عرض / فتح
    اصدار الناشر (بإمكانك الوصول وعرض الوثيقة / التسجيلةمتاح للجميع Icon)
    اصدار الناشر (تحقق من خيارات الوصول)
    تحقق من خيارات الوصول
    التاريخ
    2017
    المؤلف
    Bhamare, Deval
    Samaka, Mohammed
    Erbad, Aiman
    Jain, Raj
    Gupta, Lav
    Chan, H. Anthony
    ...show more authors ...show less authors
    البيانات الوصفية
    عرض كامل للتسجيلة
    الملخص
    Service Function Chaining (SFC) is the problem of deploying various network service instances over geographically distributed data centers and providing inter-connectivity among them. The goal is to enable the network traffic to flow smoothly through the underlying network, resulting in an optimal quality of experience to the end-users. Proper chaining of network functions leads to optimal utilization of distributed resources. This has been a de-facto model in the telecom industry with network functions deployed over underlying hardware. Though this model has served the telecom industry well so far, it has been adapted mostly to suit the static behavior of network services and service demands due to the deployment of the services directly over physical resources. This results in network ossification with larger delays to the end-users, especially with the data-centric model in which the computational resources are moving closer to end users. A novel networking paradigm, Network Function Virtualization (NFV), meets the user demands dynamically and reduces operational expenses (OpEx) and capital expenditures (CapEx), by implementing network functions in the software layer known as virtual network functions (VNFs). VNFs are then interconnected to form a complete end-to-end service, also known as service function chains (SFCs). In this work, we study the problem of deploying service function chains over network function virtualized architecture. Specifically, we study virtual network function placement problem for the optimal SFC formation across geographically distributed clouds. We set up the problem of minimizing inter-cloud traffic and response time in a multi-cloud scenario as an ILP optimization problem, along with important constraints such as total deployment costs and service level agreements (SLAs). We consider link delays and computational delays in our model. The link queues are modeled as M/D/1 (single server/Poisson arrival/deterministic service times) and server queues as M/M/1 (single server/Poisson arrival/exponential service times) based on the statistical analysis. In addition, we present a novel affinity-based approach (ABA) to solve the problem for larger networks. We provide a performance comparison between the proposed heuristic and simple greedy approach (SGA) used in the state-of-the-art systems. Greedy approach has already been widely studied in the literature for the VM placement problem. Especially we compare our proposed heuristic with a greedy approach using first-fit decreasing (FFD) method. By observing the results, we conclude that the affinity-based approach for placing the service functions in the network produces better results compared against the simple greedy (FFD) approach in terms of both, total delays and total resource cost. We observe that with a little compromise (gap of less than 10% of the optimal) in the solution quality (total delays and cost), affinity-based heuristic can solve the larger problem more quickly than ILP.
    DOI/handle
    http://dx.doi.org/10.1016/j.comcom.2017.02.011
    http://hdl.handle.net/10576/16898
    المجموعات
    • علوم وهندسة الحاسب [‎2485‎ items ]

    entitlement


    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    الصفحة الرئيسية

    أرسل عملك التابع لجامعة قطر

    تصفح

    محتويات مركز المجموعات الرقمية
      الوحدات والمجموعات تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر
    هذه المجموعة
      تاريخ النشر المؤلف العناوين الموضوع النوع اللغة الناشر

    حسابي

    تسجيل الدخول

    إحصائيات

    عرض إحصائيات الاستخدام

    عن المستودع الرقمي

    الرؤية والرسالة

    المساعدة

    إرسال الأعمال الأكاديميةسياسات الناشر

    مركز المجموعات الرقمية لجامعة قطر هو مكتبة رقمية تديرها مكتبة جامعة قطر بدعم من إدارة تقنية المعلومات

    اتصل بنا
    اتصل بنا | جامعة قطر

     

     

    Video