• English
    • العربية
  • العربية
  • Login
  • QU
  • QU Library
  •  Home
  • Communities & Collections
  • Help
    • Item Submission
    • Publisher policies
    • User guides
    • FAQs
  • About QSpace
    • Vision & Mission
View Item 
  •   Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  • Qatar University Digital Hub
  • Qatar University Institutional Repository
  • Academic
  • Faculty Contributions
  • College of Engineering
  • Mechanical & Industrial Engineering
  • View Item
  •      
  •  
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Uniform fractional factorial design tables for energy piles with maximum thermal conductance

    Thumbnail
    View/Open
    ESUS17017FU1.pdf (567.9Kb)
    Date
    2017
    Author
    Ahmed, Khaled
    Al-Khawaja, Mohammed
    Suleiman, Muhannad
    Metadata
    Show full item record
    Abstract
    Energy Piles are the heat exchangers of Ground Source Heat Pumps (GSHP) that transfer the buildings heat to the lower temperature shallow ground reducing the energy consumption in the cooling of buildings. These piles are designed with main objective of lowest thermal resistance. In this paper, nine factors influencing the thermal resistance of the energy pile are defined and statistically evaluated. These nine factors are; number of tubes, pile diameter, tube diameter, tube thickness, tube location, pile conductivity, tube conductivity, soil conductivity, and water flow rate. The thermal resistance of the energy pile is calculated using the line source analytical model. The significance of these factors is evaluated using fractional factorial uniform design tables. The results show significant decrease in the pile thermal resistivity with the increase of the tube diameter, number of tubes, water flow rate, and tube and pile thermal conductivities. On the other hand, decrease of the tube thickness, and pile diameter slightly decrease the pile thermal resistivity. Furthermore, the tubes located near the piles outer surface show significant decrease in the pile thermal resistivity. Also, the soil thermal conductivity has shown insignificant effects on the pile thermal resistivity. 1 2017 WIT Press.
    DOI/handle
    http://dx.doi.org/10.2495/ESUS170171
    http://hdl.handle.net/10576/16982
    Collections
    • Mechanical & Industrial Engineering [‎1465‎ items ]

    entitlement


    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Home

    Submit your QU affiliated work

    Browse

    All of Digital Hub
      Communities & Collections Publication Date Author Title Subject Type Language Publisher
    This Collection
      Publication Date Author Title Subject Type Language Publisher

    My Account

    Login

    Statistics

    View Usage Statistics

    About QSpace

    Vision & Mission

    Help

    Item Submission Publisher policiesUser guides FAQs

    Qatar University Digital Hub is a digital collection operated and maintained by the Qatar University Library and supported by the ITS department

    Contact Us | Send Feedback
    Contact Us | Send Feedback | QU

     

     

    Video